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Abstract 

For a light rail system, smooth contact between the vehicle and the guide beam is 
critical for reducing the friction and the vibration of an operating vehicle. Therefore, 

the shape of guide beams needs to be controlled with mm-level accuracy during the 
construction. Currently, most methods for detecting shape defects of guide beams, 

such as experimental run of vehicles, are costly and tedious. In addition, these 
methods can only identify defects after the completion of the construction, and 

cause reworks and delays of defects fixings. 

From dense point clouds collected by laser scanners, inspectors can manually 

extract geometric features and conduct virtual inspections of guide beams. However, 

the manual geometric feature extraction process impedes effective utilization of 
point clouds for the shape analysis of guide beams. Aiming at improving the 

efficiency of utilizing laser scanning technology for guide beam quality control, this 

research developed a semi-automatic approach for simultaneously extracting the 

axis parameters (e.g., radius) and cross-section features (e.g., width) of a guide 

beam using a Hough-Transform based approach, and discusses factors (e.g., data 
density) influencing the performance of this approach. 

Keywords: Laser Scanning; Geometric Feature Extraction; Information Retrieval; 

Quality Control; Surveying; 3D Modeling; 

 

Introduction 

The precise installation of a guide beam for a light rail system (Figure 1a) is critical 

for both the riding quality and the maintenance costs. Smooth contact between the 
guide wheels of a vehicle and the guide beam are important for reducing the vehicle 

frictions and hence reducing the vibration of an operating vehicle and the 

maintenance costs of the vehicle and the guide beam. Therefore, the quality control 

of the shape of a guide beam is important for the performance of a light rail system 

and the cash flow of the project. Currently, two approaches for detecting shape 

defects of guide beams are mainly used: 1) Visual inspection; 2) Experimental run 

of vehicles. The former requires inspectors to walk along the track and manually 

identify shape defects (e.g., distortions of the flanges). This method requires 

highly-skilled inspectors to make decisions based on their experiences, and is 

subjective and time-consuming. Experimental runs of vehicles expose a constructed 

light rail system to real working conditions. During experimental runs, engineers 

can observe the vibrations of the vehicle to identify sections of problematic guide 

beams. Such real-scale experiments could be expensive. Moreover, both the visual 
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inspection and the experimental run methods are conducted after the construction, 
when it might be too late or too expensive to fix those detected defects. 

Laser scanning is a promising method for capturing geometric details of guide 

beams during the construction. A laser 

scanner can densely sample the surfaces of a 

guide beam in minutes (1 cm step size 

within 50 m for the scanner used in this 

research), and generate dense point clouds 

(Figure 1b). With such dense data, 

inspectors can reconstruct 3D as-built 

models of guide beams using commercial 

3D modeling tools, and manually conduct 

virtual inspections on these models. One 

major issue is that this manual approach 

requires inspectors to manually extract axis 

(e.g., radius) and cross section features (e.g., 
width) from point clouds. This becomes a 

tedious approach considering the fact that 
guide beams can run for miles resulting in a 

very large amount of 3D data.   

For improving the efficiency of utilizing 

laser scanners for more effective quality 

control of guide beams, this paper presents a 

semi-automated approach for 

simultaneously extracting the axis and 
cross-section features of an I-beam. 

Related Studies 

Previous research studies have investigated various methods for extracting 

geometric features and object poses from 3D data. Kwon et al. developed 
algorithms for extracting parameters of cuboids and cylinders from flash LADAR 

scanned point clouds (Kwon et al. 2004). Vosselman et. al showed the effectiveness 
of a set of Hough transform-Based algorithms for extracting planes, cylinders and 

spheres from laser-scanned data (Vosselman et al. 2004). Based on Gauss-Newton 
least square fitting method, Barker developed a MATLAB library for extracting 2D 

and 3D lines, circles, planes, cylinders, cones and spheres (Barker 2004). Using the 

Generalized Gauss-Markoff model, Gruen and Akca proposed a framework for 

extracting arbitrarily posed parametric surfaces by comparing data patches against a 

library of predefined surface templates and determining the most probable surface 
model for a given data patch (Gruen and Akca 2005). Gilsinn et al. used Principal 

Component Analysis (PCA) to estimate the pose of an I-beam (Gilsinn et al. 2005). 
Results of these research studies show the feasibility of automatic extraction the 

geometric features of light rail guide beams from dense point clouds. 

One major difficulty of applying these previously developed geometric feature 

extraction algorithms for automatic extraction of guide beam features is that most 

algorithms can only handle simple 3D scenes (e.g., horizontal beam on flat ground 

in an open space). Many construction sites have more complicated geometric 
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conditions (e.g., moving objects, and occlusions) than those in these simplified 

scenarios. To overcome this issue, we decided to develop a semi-automated 

approach, which requires inspectors to manually localize a number of axis points of 

the guide beam, and then the algorithm can refine such rough axis information to 

obtain accurate geometric features of the guide beam. 

Guide Beam Features 

Generally, a guide beam has two categories of geometric features to be inspected 

for their shape quality control. The first category of features includes the parameters 

of the axis curve (axis curve features), while the second category of features are the 
features of the guide beam’s cross sections (cross section features). 

For most light rail systems, to ensure the smooth turning of the vehicle, the 

curvature variation should be continuous: from straight line (infinite radius), to a 

spiral curve (a curve the radius of which continuously changing from infinity to a 

specific radius value), and to a circle with the specific radius value at the end of the 

spiral curve (Figure 2). Such curve shape has continuous curvature changes. In this 

research, we call the boundary point between the straight line and the spiral curve a 

“TS” point, and the boundary 

point between the spiral and 
the circular sections a “SC” 

point. This research focused 
on recognizing the parameter 

of the straight line, the spiral 
curve length between “TS” 

and “SC”, and the radius of 
the circular section, because 

these parameters are 
controlled parameters having 

explicit as-designed values to 

be compared with the ones in 
the design drawings. 

For such a cross-section of a guide beam, the critical features to be recognized are 
the web and two flanges, which could be simplified as three lines on the 

cross-section. With these three lines, it is possible to derive two geometric 
properties of the cross section: the width of the guide beam, and the angle between 

the flange and the web. This research focused on obtaining the width of the guide 

beam, but did not look into angles between web and flanges, since the former is 

usually a controlled property of the guide beam according to several interviews 

with domain experts. Table 1 lists the parameters focused on in this paper. 

Table 1 Targeted features of a guide beam 

Feature Category Feature Details (Symbol for Representing It) 

Axis Feature • Line parameters of the straight section 

• Spiral curve length (L): curve length between TS and SC 

• Circular section radius (R) 

Cross-section 

Feature 
• Flanges (F1 and F2) and Web (W) 

• Intersection points of W and F1/F2 (P1, P2) 

• Width (w): distance between P1 and P2 

Start line 

growing here 

Line growing 

Start circle 

growing here 

TS 
SC 

Circle  

growing 

Figure 1 Line and circle fitting and growing for finding 
TS and SC points 
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Overview of the Guide Beam Feature Extraction 

Approach 

In most cases, guide beam axes are straight, or curves with small curvature (with 

radius larger than 100 m), so that the axis of a small guide beam segment (e.g., 1 m 

in length) can be 

approximated by a straight 

line linking the two ends of 

the segment. That line is 

called the “approximate axis” 

of a segment in this paper. 

For point clouds of a straight 

or approximately straight 

beam segment, projecting all 

points along its approximate 

axis results in 2D points 
profiling the cross section of 

the beam (Figure 3). The 
diagonal lines shown in this 

figure are formed by “mixed 
pixels” (Tang et al. 2007), 

which are data artifacts caused by laser spots spanning over spatial discontinuities 
(object edges). Figure 3 shows the location of the scanner to indicate that these 

diagonal lines are along the viewing directions of the scanner for guide beam edges.  

In this research, we found that if a user can manually select a number of points 
roughly on the axis of a guide beam, these manually selected points were accurate 

enough to generate approximate axes of guide beam segments for generating their 
cross-section profiles. This observation motivates the development of an approach, 

which requires users to pick the rough locations of a number of guide beam axis 
points from point clouds, and then the algorithm uses these inputs to extract and 

refine cross-section and axis features of the guide beam (Figure 4). 

Given the manually selected axis points, the semi-automated approach for guide 

beam feature extraction consists of six major steps: 1) Interpolating the manually 

selected axis points with a user-defined interpolation step size; 2) Identifying the 
locations of TS and SC points by fitting and growing straight lines and circular 

curves based on the interpolated axis points; 3) Generating a segment of point 
clouds for each line segment that link each pair of neighboring interpolated axis 

points; 4) Projecting points along its approximate axis and extracting cross-section 
features (lines representing the flanges and the web, and the intersection points 

between them) for each point cloud segment; 5) Using the extracted intersection 
points as refined axis points; 6) Using the updated axis points as input and starting 

the whole process to generate another set of cross section feature points along the 

axis. Once the updated points have no substantial deviations from the results of the 

last iteration, then the algorithm concludes that the curve updating process 

converged, and reports the latest results of curve fitting and cross section feature 
extraction. 

 

Figure 2 A segment of guide beam point cloud projected 

along the beam axis to form a cross section profile 
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Figure 4 Overview of the developed approach for guide beam feature extraction 

Detailed Feature Extraction Process 

In Step 1, the algorithm utilizes the spline interpolation method to generate 

interpolated points along the x-axis (which we define as the direction of the straight 

section of the guide beam, toward the spiral section) with a fixed step size of 1cm. 

In other words, using the manually picked axis points, the algorithm generates a 
sequence of x values with 1 cm intervals, and interpolates corresponding y values. 

In Step 2, the algorithm fits and grows straight lines and circles on the interpolated 

points for identifying TS and SC points through the following semi-automated steps. 

This step requires an inspector to visually inspect all interpolated points, and 

manually identify a point on the straight section and a point on the circular section. 

Then, starting from the manually picked straight section point and circular section 

point, the algorithm iteratively fits and grows a straight line (starting from the 

straight line point) or a circle (starting from the circular section point) toward the 

spiral section. These fitting processes use least-squares fitting. While growing 

straight/circular sections, the algorithm uses an “average deviation” metric to 

measure the fitting quality.  Average deviation is defined as the sum of the 
deviation values of all axis points from the fitting line/circle divided by the total 

number of points. The algorithm will check through all possible TS and SC point 
locations, identify the locations achieving the minimum average deviation, and 

labels them as TS and SC. The concept is that since the two sections bounding a 
spiral section are known to be a straight line and a circular section, it would be 

possible to find the TS and SC points by growing two parametric models and 
finding the best fit (Figure 2). This step generates the parameters of the linear (line 

parameters) and the circular sections (radius), and the TS and SC points for getting 

Interpolate Axis 
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the length of the spiral section. 

In Step 3, the algorithm splits the point clouds of a guide beam into segments of 
point clouds. With a sequence of interpolated axis points, the algorithm generates 

lines linking pairs of neighboring axis points. These line segments are linear pieces 

approximating the shape of the axis curve. Then, for each line segment, the 

algorithm identifies the x coordinates of the points in the point cloud that are falling 

into the x value range formed by the x coordinates of the end points of the line 

segment. Points for one line segment forms a slice of a point cloud capturing the 
shape of a beam segment. 

In Step 4, for each point cloud segment, the algorithm processes the data in the 

following three sub-steps: 1) Projecting all the points along the direction of the 
corresponding line segment; 2) Generating a binary cross-section occupancy image 

depicting the cross-section profile of the guide beam (Figure 5); 3) Applying a 

series of Hough transforms to the binary cross-section profile to detect lines in it. In 

sub-step 2, noticing that 

the cross section profile 

parts generated from 

data artifacts (e.g., 

mixed pixels that form a 

sloping line in Figure 3) 

have lower data densities, 

the algorithm generates 

2D rectangular cells 

with fixed 2D 

dimensions on the cross section plane, computes the number of points falling into 
each cell, and only label cells with more than a fixed number of points as 

“occupied” in order to ignore the lines formed by data artifacts. Based on large 
number of experiments on the data sets used in this research, the implementation in 

this research uses 3 mm by 3 mm as the cell size, and 20 points as the occupancy 
threshold, because these values were found to be able to distinguish lines formed by 

data points falling on actual object surfaces and diagonal lines formed by mixed 
pixels. The binary occupancy image generated in this sub-step serves as the input of 

sub-step 3. 

In sub-step 3 of Step 4, the algorithm utilizes the Hough transform for detecting 
lines on cross sections (Vosselman et al. 2004). Hough transform is a feature 

extraction technique to find imperfect instances of objects within a certain class of 
shapes by a voting procedure. This voting procedure is carried out in a parameter 

space, from which object candidates (e.g., straight lines) are obtained as the local 
maxima in a so-called accumulator space explicitly constructed by the algorithm for 

computing the Hough transform (Vosselman et al. 2004). In this research, in order 
to improve the sensitivity of the line detection, the algorithm runs the Hough 

transform multiple times. Each time, the algorithm extracts the longest line detected 

(the largest peak in the parameter space), and removes all occupied pixels on that 

line in the occupancy image. The next run of the Hough transform will be based on 

the updated occupancy image with the most obvious line removed. We found that 

this multiple-run Hough transform approach can detect more lines (especially short 

lines) in an occupancy image compared with the conventional approach of running 

the Hough transform once and report all the lines. Figure 6 shows five groups of 

Figure 3 A binary cross-section occupancy image 
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points labeled by different colors, which are corresponding to five lines identified 

by five runs of the 

Hough transform on 

the occupancy image 

of a segment of point 

cloud. This figure 

shows that points on 
the flanges, the web, 

and the running 
surface are separated. 

The reason that the 
algorithm detected 

two planes in data 
points on the running 

surface is that the 

projection direction 

is not exactly parallel to the running surface, such that the projected points are not 

forming a line but a wide stripe. The algorithm detected that wide stripe as two 
lines. 

In Step 5, with the detected lines on a cross-section, the algorithm computes the 
intersection points between the detected horizontal lines (the web and the running 

surface) and the vertical lines (the flanges). These feature points can be used to 
generate the width of the guide beam: the distance between two flange-web 

intersection points is roughly the width of the web. The only issue is that the flange 

is about 1 cm thick, and the detected flange line is actually the centerline of the 

flange cross-section. Using that flange center-line for calculating the guide beam 

width will generate values slightly smaller than the actual width of the guide beam, 
as will be shown in the following section. 

In Step 6, the developed approach calculates the distances between the detected 
flange-web intersection points and the interpolated axis points used in Step 2 on 

each guide beam cross-section. If these distances are larger than a specific threshold, 
then the whole iterative guide beam feature extraction process will be repeated until 

the extracted parameters converge. 

Evaluation Results and Discussion 

The evaluation of the developed approach uses point clouds collected on a site for 

experimental run of metro vehicles. The laser scanner used in this study was a 

phase-based scanner, which is capable of collecting 3D point clouds with angular 

resolution of 0.018 degree (20,000 pixels for a row in a collected panoramic range 
image), and with an accuracy of about 5 mm for every point within 50 m from the 

scanning location. After importing such dense and accurate point clouds into a 
commercially available reverse engineering environment, we manually selected a 

number of axis points, exported them as the input of our approach, and tested three 
critical components of the approach: 1) Axis feature extraction; 2) Cross-section 

feature extraction; 3) Axis updating using the extracted cross-section feature points. 

Figure 4 Five groups of data points corresponding to five lines 
detected on the cross section of a guide beam segment 
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Table 2 lists the results of axis 

feature extraction. This table 

indicates that for the straight section, 

the error of the generated axis is 

about 0.1 mm, which is very small. 

However, the extraction results of 

the length of the spiral curve and the 
radius of the circular curve are less 

accurate. These observations 
indicate that the developed approach 

needs to be improved for extracting 
axis features of curved guide beams, 

especially for spiral sections. More 
specifically, we found that the 

boundary point between the straight 

line and the spiral curve is difficult to be located accurately, and even large 

variations of the possible TS point (end point of the growing straight line) would 

not have substantial impact on the average deviation value of the straight line 

section. As a result, the generated TS locations have large uncertainties. This fact 

implies the necessity of developing a better fitting quality measure other than the 
average deviation used in this research for accurately locating the TS point. 

Table 2 Guide beam feature extraction results analysis 

Axis section Recognized feature values Errors 

Straight line A point on line: (-0.2099 m, 1.001 m) 

Line direction vector: (0.5042 m, 0.8036 

m) 

0.001 m (the average deviation 

of points on the generated line 

from the as-designed line) 

Spiral curve Length of spiral: 3.45 m (as-designed: 

5.76 m) 

2.31 m (difference from the 

as-designed spiral curve 

length) 

Circular curve Circle radius: 35.15 m (as-designed: 

38.10 m) 

2.95 m (difference from the 

as-designed circular section 

length) 

For cross-section feature extraction, the algorithm extracted flange/web and 

flange/running-surface intersection points on all cross-sections for a straight guide 

beam (for curved guide beam, the exploration is on-going). Figure 8 shows (a) the 

extracted feature points of twelve cross-sections of that beam segment; and (b) the 

calculated guide beam width based on these feature points on those twelve 

cross-sections. An interesting observation is that, for cross sections closer to the 

scanning location, more feature points can be extracted (Figure 8a). The 

non-uniformity of the data density causes this phenomenon: point clouds closer to 

the scanning location are denser, so that in the sub-step 2 of step 4 of our approach 

(occupancy image generation), more cells will be recognized as “occupied” with 

the constant occupancy threshold 20 (any 3 mm by 3 mm cells with more than 20 
points in them are labeled as “occupied”). As a result, more lines will be detected 

for cross-sections with higher data density (sections 5 to 12 in Figure 8); while for 
cross-sections further away from the scanning location (sections 1 to 4 in Figure 8), 

the algorithm could not extract enough lines for detecting all four feature points 
(two flange-web intersection points, two flange-running surface intersection points). 

That’s why in Figure 8 (b), for cross-sections 1 to 4, the generated width is 0 m 

Figure 5 Manually picked axis points of a section 

of guide beam in the data collected from a site for 

experimental run of Metro vehicles 
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(there were not enough feature points to compute the width). 

 

(a) 
 

(b) 

Figure 8 (a) Extracted feature points on 12 cross-sections along a straight guide beam; (b) 
Automatically extracted guide beam widths of the 12 guide beam cross-sections  

For cross-sections 5 to 12, the obtained guide beam widths vary from 0.193 to 0.196 

m; while the as-designed guide-beam width is 0.2 m. In-depth analyses indicate that 

the algorithm only extracts one line locating at the center of flanges, which are slabs 

of about 1 cm thick. The distance between two center lines of flanges should be 

slightly smaller than the actual width of the guide beam, which is defined as the 

outer-outer distance between two flanges. Therefore, the automatically generated 

guide beam widths are expected to be smaller than the as-designed value, and the 

testing results are consistent with this expectation: adding 5 mm (half of the flange 

thickness) back to the generated widths results in accurate results, the errors of 
which are equal or less than 2 mm. 

For updating of the guide beam axis, several preliminary analyses and visual 

inspections indicate that utilizing the feature points can roughly adjust the selected 

axis points to particular cross-section feature points (e.g., cross-section center) for 

more accurate axis feature extraction. Due to the space limit of this paper, these 
results are not presented. 

Conclusions and Future Research 

This paper presents an integrated approach for combining the two aspects of guide 
beam feature extraction from 3D laser-scanned point clouds: axis feature extraction 

and cross-section feature extraction. The evaluation results of this approach on 
point clouds collected by a phase-based scanner indicate the potential value of this 

approach. The major findings of this research are two-fold.  First, it has been 

showed that a fitting-and-growing approach can extract parameters of the straight 

section, spiral section, and circular section of a curved guide beam, and the primary 

difficulties of accurately extracting these parameters occur in the fitting of the 

curved sections and localizing the connection point between the straight section and 

the spiral section.  Second, a multiple-run Hough-transform-based line detection 

approach can accurately extract cross-section lines of a straight guide beam, and 

can automatically generate widths of the beam with 2 mm accuracy. The major 

difficulties occur in the non-uniform data densities of the point clouds, which 

require different parameter settings to achieve the best line detection results for 
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different parts of the point clouds. Instead of setting constant parameter values of 

the algorithms, in the future, we plan to explore an approach which can 

automatically adjust the algorithm parameter settings according to the data density 
variations of point clouds. 

Future studies should target at improving the axis feature extraction and 

cross-section feature extraction algorithms to overcome the difficulties mentioned 

above. In addition, in order to achieve an integration of axis extraction and 

cross-section feature extraction algorithms to get an iterative guide beam feature 

extraction approach for obtaining accurate axis and cross-section feature through 

several circles of the “axis fitting – cross section feature recognition” process, we 

plan to further test the mechanism of using recognized cross-section features to 
update axis points for converging to an accurate axis.  

Acknowledgements 

This research was partially supported by the National Science Foundation (NSF) 

under Grant No. 0420933 and 0121549 and by the Pennsylvania Infrastructure 

Technology Alliance (PITA) in conjunction with Bombardier Transportation. Any 

opinions, findings, conclusions, or recommendations presented in this publication 

are those of authors and do not necessarily reflect the views of the NSF and 
Bombardier Transportation. 

References 

Barker, R. (2004). "LSGE: The Least Squares Geometric Elements Library." NPL 

Management Ltd, ed., NPL Management Ltd, Open Source MATLAB 
Toolbox. 

Gilsinn, D. E., Cheok, G. S., Witzgall, C., and Lytle, A. (2005). "Construction 
Object Identification from LADAR Scans: An Experimental Study Using 

I-Beams." NISTIR 7286, National Institute of Standards and Technology, 
Gaithersburg, MD. 

Gruen, A., and Akca, D. (2005). "Least squares 3D surface and curve matching." 

Isprs Journal of Photogrammetry and Remote Sensing, 59(3), 151-174. 

Kwon, S. W., Bosche, F., Kim, C., Haas, C. T., and Liapi, K. A. (2004). "Fitting 

range data to primitives for rapid local 3D modeling using sparse range 
point clouds." Automation in Construction, 13(1), 67-81. 

Tang, P., Huber, D., and Akinci, B. "A Comparative Analysis of Depth 
Discontinuity and Mixed Pixel Detection Algorithms." Proceedings of the 

6th International Conference on 3-D Digital Imaging and Modeling, 
Montréal, Québec, Canada, 29-38. 

Vosselman, G., Gorte, B. G. H., Sithole, G., and Rabbani, T. (2004). "Recognising 

Structure in Laser Scanner Point Clouds." The International Archives of the 

Photogrammetry, Remote Sensing and Spatial Information Sciences, 

46(part 8/W2), 33-38. 

 


